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LETTER TO THE EDITOR 

The dynamic variations of terrace length during growth on 
stepped surfaces 

Andrea K Myers-Beaghton and Mark R Wilby 
Imperial College-Research Development Corporation of Japan ’Atomic Arrangement: 
Design and Control for New Materials’ Projea, Department of Physics, Imperial College, 
London SW7 282. UK 

Received 5 October 1990 

Abstract. A recently derived theoretical method for modelling molecular beam epitaxy on 
stepped surfaces, which includes a nonlinear term for nucleation, has been extended so 
that large deviations from periodic step structure can be examined. The method is used in 
conjunction with Monte Carla simulations t o  monitor the growth dynamics o f a  stepped 
surface with unequal terrace lengths and identify the stable configuration. We show that 
the equidistant step configuration is favoured even in growth regimes where nucleation on 
the terraceseompeten with atom incorporation at steps. Furthermore, we founda remarkable 
qualitative correspondence of the results obtained from the nonlinear diffusion equations 
and the simulations. 

Recently there has been a renewed interest in the theoretical study of crystal growth, 
motivated in part by technological developments in precise methods for the fabrication 
of semiconductor crystals, such as molecular beam epitaxy (MBE).  The use of vicinal 
(stepped) substrates at sufficiently high temperatures to allow growth by step propaga- 
tion to dominate has proved particularly valuable for device construction. It is therefore 
vital to know what effect growth has on the step configuration, since the stability of 
the step positions is critical in obtaining well defined structures such as tilted superlat- 
tices [l]. 

Previous analytical models of crystal growth by step propagation are based on the 
near-equilibrium theory of Burton, Cabrera and Frank (BCF) [2], which assumes that 
a steady-state array of equidistant steps is stable under growth conditions. It is important 
to investigate the validity of this assumption, particularly when displacements from 
the equidistant configuration are large. The stability of an array of equal-length terraces 
to small length perturbations for the linear BCF theory has been analysed under the 
quasi-steady-state approximation, i.e. that the adatom fluxes to perturbed steps have 
the same form as in the steady-state solution [3-5]. Recently, Ghez et a /  [ 6 ]  have 
included in BCF theory the effect of the moving boundary and departures from 
equilibrium at the step edges-hoth important under the highly non-equilibrium growth 
conditions of MBE-in a linear stability analysis of step motion and concluded that a 
train of equally spaced steps is stable to small perturbations under growth conditions. 

In none of the aforementioned treatments, however, was nucleation on the terraces 
considered, despite the fact that island formation is an important part of MBE on 
stepped surfaces, even dominating over incorporation at the step edges under certain 
conditions [7]. Although it has been suggested that island formation may destabilize 
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equidistant step arrays to perturbations [ 5 ] ,  nucleation has not been included in any 
previous stability analyses. Certainly the nucleation rate, which is nonlinear in the 
adatom concentration [X, 91, precludes a straightforward linear stability analysis. 

In this letter, we use Monte Carlo computer simulations and a nonlinear diffusion 
equation which includes diatomic nucleation, both developed previously to model M B E  

on stepped surfaces, to track the temporal growth of a step train with alternating 
unequal terraces. Unlike previous stability analyses which were restricted to either 
small perturbations or a quasi-steady-state approximation, both techniques follow the 
full time-dependent behaviour of the large initial perturbations and predict the 
approach to steady state a s  well as the final configuration. We show that step positions 
and velocities, and the surface coverage, exhibit temporal oscillations for certain growth 
conditions, but that a final steady state with equidistant steps is always achieved. 
Including island formation on the terraces in the nonlinear theory increases the speed 
of the approach to the final steady state. From these results we argue that a small 
amount of nucleation will actually help to stabilize perturbations in periodic step 
arrays. Description of each approach and its application to a highly perturbed step 
train is given below. 

We use a Monte Carlo simulation, employed previously to model M B E  [lo], in 
which we can easily incorporate a vicinal substrate. The method, which is described 
in detail elsewhere [lo], is based upon the solid-on-solid model proposed by Weeks 
and Gilmer [l l] .  During growth, material is deposited randomly onto the lattice and 
migration of atoms on the surface occurs via an Arrhenius diffusion term. The energy 
barrier to diffusion depends on the local contiguration. The barrier consists of the 
energy bond to the substrate and the bonds formed with any nearest neighbours in 
the same horizontal plane of the lattice. In all the cases reported here, we performed 
our simulations on a 120 x 120 lattice with a substrate binding energy of 1.3 eV and 
an in-plane nearest-neighbour bond of 0.25 eV. Prior to growth, the lattice is constructed 
of steps with alternating short and long terraces. 

The nonlinear growth theory for equal-length terraces has been described previously 
[8,9]; here we consider its extension to a system with alternating terrace lengths. The 
surface is an infinite train of flat terraces alternating in lengths of h ,  and h, the 
x-direction moving with velocities o,(t) and u, ( t ) ,  shown in figure 1. Since the initial 
step structure altemates between the two terrace lengths on each successive step, we 
need only consider the system of two adjoining terraces. We further assume that the 
step edges are straight on average in the y-direction; thus the concentration of single 
adatoms on the terraces n(x ,  r )  is one-dimensional and the substrate is a continuum, 
whereas the simulation model is fully two-dimensional and treats discrete lattice sites. 

Figure 1. Schematic of a cross seclion through the crystal with alternating-length terraces. 
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In  a stationary frame the diffusion equation is: 

where J is the adatom flux to the surface and D is the diffusion constant. The last two 
terms in (1 )  represent the formation of diatomic islands and are thus an approximation 
of adatom nucleation processes on the terraces. Here, U is a capture efficiency for the 
collision of diffusing adatoms to form pairs, m is the number of sites around a single 
adsorbed adatom that will form a diatomic island when filled by impingement from 
the beam, and no is the concentration of lattice sites. 

It is convenient to utilize dimensionless variables so that the concentration is of 
orderunity.T'hus wedefiney-DnlJh?,, where h , , = ( h , + h 2 ) / 2 , a n d x + x / h , , s o  that 
0 s x s 2 over the two-terrace system. Time is scaled by the amount of time necessary 
to deposit one monolayer, t+ t / (no/J ) ,  and the velocities are transformed as vi+  
vin,/Jh.,, i = 1,2. Note that for equal terraces (h,  = h2), the velocities are unity at 
steady state, where vino = Jhj. We rewrite (1) in terms of the new variables, and with 
reference to a coordinate system which moves with the velocity u2 of the longer step: 

JY 2 = e+ v 2 a  - + 1 - 2apy2 - 2amy. 
J l  Jx' Jx  

The dimensionless parameter a = Jh:,/Dn, represents the ratio of the diffusion time 
for an adatom to move an average terrace length (hz,/D) to the inter-arrival time of 
atoms per site (n,/J), and the dimensionless parameter p = un,h:, is related to the 
misorientation angle through the average terrace length with monatomic steps. 

We denote ~ ' ( 1 )  as the dimensionless position of the inner step, which moves at 
a velocity v, - v2 relative to our reference frame. Since at 1 = 0, prior to growth, 
x'(0) = h,/h.,, we obtain x*(1) = h,/h,,+fA (U, - v2) d f  for the position of the inner 
boundary with respect to the outer steps. The boundary conditions for n(x, 1 )  are 
determined by the assumption that the step edges act as perfect sinks, thus n(0, I )  = 
n ( x l ,  t)=n(x!, 1 )  = n(2,l)  =O.  Here, xT and x i  denote respectively the inner boun- 
dary approached from below or above the step edge. 

The dimensionless pair concentration Y(x, t ) -  D N l J h f ,  is governed by a con- 
tinuity equation similar to that for the adatom concentration: 

_- J Y  - v 2 a C + a p y 2 + a m y .  ' Jl  ax 

At the end of the steps, the step is being freshly formed and there can be no islands 
o n t o p o f i t :  Y(x5 , t )=Y(2 , t )=O.  

Solution of (2)-(3) requires additional relations for the unknown step velocities 
v,(r) and ~ ~ ( 1 ) .  A local mass balance at the step edge which accounts for both the 
diffusive flux of the adatoms into the step and the convective flux of upswept islands 
yields: 

The equations (2)-(4) are discretized in time and space via an implicit finite 
difference method [ 121. Since we have transformed to coordinates moving with velocity 



L38 Letter to the Editor 

U,, the two outer boundaries are fixed. However, the inner step moves with respect to 
our fixed system with a velocity U ,  - v2 and, in general, it will not coincide with a 
spatial grid point in successive time steps. This difficulty is overcome by allowing the 
inner step to move between grid points and using Lagrangian interpolation to discretize 
the equations around the moving inner step [13]. 

In figure 2 we show the relative position of the inner step x * ( f )  with and without 
nucleation as a function of a for an initial terrace distribution of h , / ( h , + h , ) = 0 . 2 5  
and ha, = loa, where a is the distance between lattice sites. Under growth conditions, 
the alternating-length step train is unstable and will always eventually decay to a state 
where all terrace lengths are equal [ x * ( f  + a) = 0.51. Note that when nucleation is 
neglected, recovery to the steady state is much slower and oscillations are absent. 
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At low a (since a is inversely proportional to 0, this corresponds to high tem- 
perature (high D ) )  there is very little nucleation on the terraces. Growth is dbminated 
by step propagation since most adatoms are incoporated at the step edge. However, 
there is slightly more nucleation on the larger terrace than on the smaller one, thus 
leading to a larger incorporation rate of islands at the short step and faster growth 
relative to the large step. Additionally, due to the moving boundary, the single adatom 
concentration is slightly skewed so that more migrating adatoms enter the step from 
below than above. Since this effect is more pronounced for the larger terrace, the net 
result is also a higher flux at the shorter step. The step position slowly and monotonically 
increases to a steady-state equidistant configuration. 

At higher a (lower temperature) the situation is markedly different. Island formation 
on the terraces competes with incorporation of adatoms at the step edges. Since the 
dimensionless nucleation rate depends on the square of the terrace length, islands 
build up far more densely on the large terrace than on the small one. Eventually, after 
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includes the population of islands on each terrace as well as the relative sizes of the 
terraces. 

The role of nucleation in driving the system toward equidistant step arrays can be 
understood as follows. More nucleation will occur on the larger terrace and a greater 
island concentration will build up. Since islands can only be incorporated below the 
step, this means that a shorter step will always have a higher velocity due to convective 
upsweep of islands on the long terrace below. It will thus move faster relative to the 
long step, which sweeps up relatively few islands from the short terrace below it. If 
overshoot occurs, the process is then reversed to force the system back to the equidistant 
steady state. Therefore we conclude that a small amount of nucleation will in fact act 
to srabilize step trains to perturbations in terrace length. We would however like to 
stress that this conclusion holds for only relatively small amounts of island formation; 
in regimes where nucleation is the dominant growth mechanism and growth may be 
distributed over more than one layer on a given terrace, this treatment, based on a 
step propagation growth mode, is no longer applicable. If nucleation isnot  included 
in the model (right panel of figure 21, the only mechanism for driving the system to 
an equidistant configuration is the imbalance in adatom fluxes above and below the 
step due to the moving reference frame. Since this effect is relatively weak, the perturbed 
system recovers much more slowly to the steady-state value than if nucleation were 
considered. For instance, for a = 0.015, the relative step position has moved less than 
one tenth of the way to its final value after deposition of six monolayers, whereas with 
the addition of nucleation the step position has recovered almost ninety per cent of 
the distance to the steady-state value in the same time. 

Of particular interest is the fact that the qualitative behaviour of the step motion 
as a function of growth conditions is the same for both simulations and theory. Since 
the simulations are fully two-dimensional and thus incorporate fluctuations and growth 
perpendicular to the step train, while the continuum model is one-dimensional and 
only approximates the complex nucleation processes, the correspondence between the 
results of the two models is remarkable. The only discrepancy between the simulations 
and the theory is a quantitative one; namely, using the same parameters, the nonlinear 
theory predicts that coverage oscillations are exhibited at lower temperatures than in 
the simulations. This is due t o  the fact that only diatomic nucleation is included in 
the nonlinear theory; a t  low temperatures we have shown that for a quantitative 
treatment higher-order nucleation must be considered [ 141. 

In conclusion, by tracking the temporal evolution of alternating-length steps using 
simulation and a nonlinear continuum theory, we have shown that even under condi- 
tions where nucleation processes on the terraces are significant, step trains with terrace 
length perturbations will evolve to a stable, equidistant steady state. A small amount 
of island formation greatly hastens the recovery of systems with even very large 
perturbations, and will also increase the stability of an equidistant step train to 
disturbances in the terrace lengths during growth. Depending on the growth conditions, 
step positions may oscillate before settling to the steady-state equidistant array. 

We plan to extend the nonlinear theory to track the full temporal evolution of step 
trains For complex systems where the final steady state may not be the equidistant one, 
such as monatomically stepped Si( 100). Here, anisotropy of the surface layers may 
requireinclusion of different adatom diffusivities on each terrace as well as attachment- 
detachment kinetics at step edge. 

We would like to thank Dr D D Vvedensky for helpful advice and discussions. 
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